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Kiippers-Lortz instability in a rapidly rotating inviscid magnetoconvection
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The Kiippers-Lortz instability is shown to exist in a rapidly rotating inviscid magnetoconvection. The
threshold for the Elsasser number C is approximately 0.3 and the critical angle at which the instability

sets in is found to be 59°.

PACS number(s): 47.20.Bp

I. INTRODUCTION

The instability that can arise in a stratified rapidly ro-
tating hydromagnetic system such as the Earth’s core and
stellar convection zone of rapidly rotating stars have
close links with dynamo theory. An account of such in-
stabilities is found in the magnetoconvection (MAC)
wave theory of Braginsky [1]. The magnetic field of the
Braginsky model is not small and magnetic (Lorentz)
force is as potent as the Archimedian (buoyancy) force
driving the instability and as the Coriolis force in deter-
mining the course of the instabilities, a fact which led
Braginsky to christen them as “MAC waves.” It is wide-
ly believed that planetary and stellar magnetic fields orig-
inate from the convection-driven dynamos. The viscous
forces have negligible effect on rapidly rotating magneto-
convection. In an inviscid, electrically and thermally
conducting fluid when the energy released by the buoyan-
cy force acting on the fluid balances the energy dissipated
by joule heating, the transition occurs from the conduct-
ing state, with zero fluid velocities and vertical tempera-
ture gradient independent of horizontal coordinates, to
the convective roll states, with these quantities varying
periodically in the horizontal direction.

The generalization of Braginsky’s linear theory to in-
clude thermal and Ohmic dissipation was carried out by
Eltayeb [2]. Rapidly rotating magnetoconvection in a
plane layer in the nonlinear regime was studied by
Roberts and Stewartson [3]. Roberts and Stewartson
considered an inviscid electrically conducting fluid which
was kept rotating about an axis parallel to gravity in the
presence of an externally impressed magnetic field in the
horizontal direction. Sowards [4] further improved
Roberts and Stewartson’s model by introducing vertical
walls parallel to the applied magnetic field. Kiippers-
Lortz [5] have shown that at the onset of stationary con-
vection, the roll solution could become unstable to per-
turbations by rolls with a different axis. This led to the
onset of complicated time dependence and a possible
chaotic behavior right at the threshold for convection
when the Taylor number exceeded a critical value. In
this paper, we study the Kiippers-Lortz instability in the
limit of small Rossby number (R, <<1) and for x/n <<1
(k and 7 are the coefficients of thermal and magnetic
diffusivity, respectively). These assumptions are valid for
the core of the solar planets. Here we have considered an
inviscid fluid and instead of the Taylor number we have a
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dimensionless number C, called the Elsasser number,
which is a ratio of the Lorentz force to the Coriolis force.
In the next section we obtain the threshold value of C for
the onset of Kiippers-Lortz instability in the limit of
small Rossby number and /7 <<1. In Sec. III we sum-
marize our results.

Il. THE KUPPERS-LORTZ INSTABILITY

Let us consider an electrically and thermally conduct-
ing inviscid fluid between two horizontal planes with ad-
verse temperature gradients which is kept rotating
about z axis with a constant angular velocity Q=Qg,.
H=Hge, is an externally impressed magnetic field.
These planes bound an incompressible, electrically and
thermally conducting inviscid fluid of density p,. u,, is
the coefficient of magnetic permeability, 7 is magnetic
diffusivity, g is the acceleration due to gravity. B is the
adverse temperature gradient, @ and k are, respectively,
coefficients of thermal expansion and thermal diffusivity
of the fluid. We use Cartesian system of coordinates
whose dimensionless vertical coordinate z and dimension-
less horizontal coordinates x,y are scaled on the depth of
the layer of fluid, d. The velocity v(u,v,w), the tempera-
ture 0, the time ¢, the pressure p, and the magnetic field
H(H,,H,,H,) are nondimensionalized by the scales
k/d,Bd,d?/k,pyc®d ~%, and kH, /7.

In the Boussinesq approximation the equations that de-
scribe the motion of a rotating and electrically conduct-
ing inviscid fluid in an externally impressed magnetic
field are

V-v=0, V-H=0, (1)
av oH
Ry |5, H(v-VIv|=C| +R,,,(HV)H]
1 A 2 CRm 2
=— +
V [Ryp 8K, |QXv|>+CH,+ 5 |H|
+R68,+(vXQ), 2)
§2+(v-V)9=w+V29 R (3)
at
aH A V=172
R, ?—vxwxn) —VX(VvX%E,)=VH, 4)

where & is a unit vector along the axis of rotation and
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here we assume ﬁ=’éz. The dimensionless parameters
are the Rossby number R, the magnetic Prandtl number
R,,, the Elsasser number C and R. These dimensionless
numbers are defined as follows

mH G
0: K 7 Rmzi , C:—IJ' 0 R
2Qd n 8mpyn§d
and
_ apgd*
R=—]—"—.
2kQ)

The number R is the ratio of forces due to buoyancy to
the forces due to rotation and the Elsasser number C is
the ratio of Lorentz force to the Coriolis force.
The linear stability analysis of Eqgs. (1)-(4) gives the
threshold for stationary convection as
(T +gd[CPrr+(mP+g0)]
sc Cq 62 (5)

where g, is the wave number of the critical mode and is
given by

g2=mV'1+C?. (6)

The relevant equations for the study of Kuppers-Lortz
instability when Ry <<1 and R,, <<1 are

—CD*w+RVi6—Dw,=0, (7)
—CD2w2+V2w=O R (8)
2_ 0 _
Vi—— |8+w=(v-V)O, 9)
ot

where w and w, are the z components of velocity and vor-
ticity (@=V Xv). We can write Egs. (7)-(9) as

Ly,X+(AR)L,X=N(X,X), (10)

we have dropped the time derivative in Eq. (9) and the
vectors X, N (X, X) are defined as following

w 0

X=lw, |, NXX)= 0 . (11
0 (v-V)6

AR =R —R, L\, and L are operators defined by

—-CD* D RV}

L,=| DV® —cD* 0 |, (12)

1 0 v?

0 0 V;

L,=1{0 0 0 |. (13)
00 O

We assume that a state X represents cylindrical rolls,
whose axis is along the y axis. For R slightly greater than
R (supercritical bifurcation), one can find this state us-
ing perturbation theory, by expanding X systematically in
powers of € as

, and R=R_ .+ ¥ R, .
n=1

w'l
X=3 €X,, X,= |o,,
n=0 en

(14)

Working order by order in €, we obtain the following re-
sults.

The Unperturbed State. To the lowest order in € we
form Eq. (10) LyX,=0, which has the following solutions
for ideal boundary conditions in w.

Wy =cosq.x sinwz ,

T .
uy= — ——sing.x cosmz ,
c
m+ql
Vo= sing.x cosmz , (15)
Cmq.
0y=—5 5 c0sq X sinmz ,
T +gq;
gl .
®;0= 5 COSg X Sinmz .

To the next order, we have
L0X2=~R2L1XO+N(X0,XK)+N(X1,X0) . (16)

The solvability condition for this order gives,
R

sC
R, S tgl) (17)
We observe that R, >0, hence the bifurcation to the con-
vection state is forward for all values of C.

The Perturbed State. Exploring the stability of the
basic cylindrical rolls to a set of rolls whose axis makes
an angle ¥ with x axis is the essence of studying
Kippers-Lortz instability. We introduce a perturbation
vector X, =YeP'. We carry out a stability analysis of
linearizing in Y. Equations (7)-(9) can be written by
linearizing in Y as

LyY+(AR)L, Y=N(X,Y)+N(Y,X)+pMY , (18)
where M is a diagonal matrix given by

000
M=10 0 0]. (19)
001

Equation (18) yields an eigenvalue condition on p, the
rate of growth of the perturbation. We expand p and Y
as

p=2 €py,

n=0

(20a)

Y=3 €Y,, (20b)
n=0
where Y is the column vector of perturbed quantities and
we denote the perturbed quantities by tildes.
To the lowest order of €, we have with p, =0
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L,Y,=0. (21)
Solution of Eq. (21) is given by
[CrPcosyp+ (72 +g2)siny]

up

Cmq,

Xsin(k;x +k,y)cosmz ,
B [(72+g2)cosyy— Cmsiny]
Po= Cmq,

Xsin(k x +k,y)cosmz , (22)
Wy=cos(kx +k,y)sinmz ,

(172+qcz)

B,0=— ——C-ﬂ——cos(k,x +k,y)cosmz ,
0y=— ﬂ_z—j_—q—?cos(k]x +k,y)sinmz ,

where k, and k, are the components of the wave vector
k, i.e., k; =qg.cosy and k, =g, siny.
To the first order we have

LY, =N(Xy, Yo)+N(Yy,Xy)+p MY, . (23)

Solvability condition of the above equation leads to
p1=0. The solution of (23) with p, =0 is found to be

w,=(A cosa’+ A_cosa” )sin2nz ,
#,=(D sinat+D_sina~ )cos2nz ,
7, =(C sina™ +C_sina "~ )cos2nz , (24)
@,,=(Bcosa’ +B_cosa )cos2nz ,
8,=(E cosa’ +E _cosa” )sin27z ,

where

at=(k,tq )x+k,y ,

s =41 +29X1%cosy) ,

_ CR  mqsin’y
A:=7 (2 +q2)[(4C*m*+A )AL —2R qX(1+cosy)]
;tz_A_:tC:—i , (25)
C.o—— 2w siny + B, (1%cosy)
* 2q,(1tcosy) ’
_q.Cysiny+27m A,
D= )
q.(1xcosy)
244 (7 +g})—m(1F cosy)
i 2Am+q2)A,
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FIG. 1. Plot of 4 versus 1/C, where C is the ratio of Lorentz
force to Coriolis force.
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To the next order of €, we obtain

LyY,+R,L,Y,=N(X,,Y,)+N(X,,Yy)+N(YyX,)
+N(Y,X,)+p,MY, . (26)

Solvability criterion of above equation is given by

_ (m+ql)? E.+E +7r(172+qcz)

m(m*+q2)
————;——[E+(1+cos¢)+E_(1—cos¢)]

~%ip,-D 1-T[4a,+4_]. @7
4 4
The condition for Kiippers-Lortz instability is thus given

by p,=0.
III. RESULTS

We have derived the condition for Kiippers-Lortz (KL)
instability for Rayleigh-Bénard convection in the pres-
ence of vertical magnetic field in an inviscid fluid. We
have also calculated numerically the threshold for the El-
sasser number C (Fig. 1) and is found approximately to be
0.3. We find that the angle 1 is weakly dependent on the
magnetic field. An important observation is that the ab-
sence of viscosity does not stabilize the system against
KL instability.
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